346 research outputs found

    Time-Staging Enhancement of Hybrid System Falsification

    Full text link
    Optimization-based falsification employs stochastic optimization algorithms to search for error input of hybrid systems. In this paper we introduce a simple idea to enhance falsification, namely time staging, that allows the time-causal structure of time-dependent signals to be exploited by the optimizers. Time staging consists of running a falsification solver multiple times, from one interval to another, incrementally constructing an input signal candidate. Our experiments show that time staging can dramatically increase performance in some realistic examples. We also present theoretical results that suggest the kinds of models and specifications for which time staging is likely to be effective

    Dynamics of fractional N-soliton solutions with anomalous dispersions of integrable fractional higher-order nonlinear Schr\"odinger equations

    Full text link
    In this paper, we explore the anomalous dispersive relations, inverse scattering transform and fractional N-soliton solutions of the integrable fractional higher-order nonlinear Schrodinger (fHONLS) equations, containing the fractional Hirota (fHirota), fractional complex mKdV (fcmKdV), and fractional Lakshmanan-Porsezian-Daniel (fLPD) equations, etc. The inverse scattering problem can be solved exactly by means of the matrix Riemann-Hilbert problem with simple poles. As a consequence, an explicit formula is found for the fractional N-soliton solutions of the fHONLS equations in the reflectionless case. In particular, we analyze the fractional one-, two- and three-soliton solutions with anomalous dispersions of fHirota and fcmKdV equations. The wave, group, and phase velocities of these envelope fractional 1-soliton solutions are related to the power laws of their amplitudes. These obtained fractional N-soliton solutions may be useful to explain the related super-dispersion transports of nonlinear waves in fractional nonlinear media.Comment: 14 pages, 4 figure

    Transcribing Content from Structural Images with Spotlight Mechanism

    Full text link
    Transcribing content from structural images, e.g., writing notes from music scores, is a challenging task as not only the content objects should be recognized, but the internal structure should also be preserved. Existing image recognition methods mainly work on images with simple content (e.g., text lines with characters), but are not capable to identify ones with more complex content (e.g., structured symbols), which often follow a fine-grained grammar. To this end, in this paper, we propose a hierarchical Spotlight Transcribing Network (STN) framework followed by a two-stage "where-to-what" solution. Specifically, we first decide "where-to-look" through a novel spotlight mechanism to focus on different areas of the original image following its structure. Then, we decide "what-to-write" by developing a GRU based network with the spotlight areas for transcribing the content accordingly. Moreover, we propose two implementations on the basis of STN, i.e., STNM and STNR, where the spotlight movement follows the Markov property and Recurrent modeling, respectively. We also design a reinforcement method to refine the framework by self-improving the spotlight mechanism. We conduct extensive experiments on many structural image datasets, where the results clearly demonstrate the effectiveness of STN framework.Comment: Accepted by KDD2018 Research Track. In proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'18

    Online Causation Monitoring of Signal Temporal Logic

    Full text link
    Online monitoring is an effective validation approach for hybrid systems, that, at runtime, checks whether the (partial) signals of a system satisfy a specification in, e.g., Signal Temporal Logic (STL). The classic STL monitoring is performed by computing a robustness interval that specifies, at each instant, how far the monitored signals are from violating and satisfying the specification. However, since a robustness interval monotonically shrinks during monitoring, classic online monitors may fail in reporting new violations or in precisely describing the system evolution at the current instant. In this paper, we tackle these issues by considering the causation of violation or satisfaction, instead of directly using the robustness. We first introduce a Boolean causation monitor that decides whether each instant is relevant to the violation or satisfaction of the specification. We then extend this monitor to a quantitative causation monitor that tells how far an instant is from being relevant to the violation or satisfaction. We further show that classic monitors can be derived from our proposed ones. Experimental results show that the two proposed monitors are able to provide more detailed information about system evolution, without requiring a significantly higher monitoring cost.Comment: 31 pages, 7 figures, the full version of the paper accepted by CAV 202
    • …
    corecore